Rumus Mencari Diameter Lingkaran

Rumus Mencari Diameter Lingkaran

Rumus Titik Pusat Lingkaran

Kalau nyari jari-jari lingkaran, mungkin elo udah tau rumus r = d : 2. Tapi, gimana sih, cara mencari titik pusat lingkaran?

Salah satu cara mencari titik pusat lingkaran yaitu menggunakan rumus. Kalau di kehidupan sehari-hari, elo bisa banget menggunakan rumus di bawah ini buat nyari titik pusat lingkaran di ring basket.

Tunggu, deh. Buat apa gue nyari titik pusat lingkaran yang ada di ring basket? Eits, ini dia menariknya!

Kalau elo main basket dan tahu angka tepat dari titik pusat lingkarannya, elo bisa lebih hati-hati saat melempar bola ke dalam ring supaya bisa masuk dengan tepat.

Nah, ini rumus yang bisa elo pakai buat mencari titik pusat lingkaran.

Selain rumus di atas, sebenarnya cara mencari titik pusat lingkaran ini beragam banget, lho. Biasanya, bakal diketahui persamaan lingkaran dulu, nih. Terus, elo bisa cari titik pusat lingkaran melalui koordinat.

Misalnya, diketahui persamaan lingkaran (x-1)² + (y-2)². Nah, elo jadi langsung tahu koordinat x di angka 1. Sedangkan koordinat y di angka 2. Itu dia rumus gampangnya kalau elo mau mencari titik pusat lingkaran.

Buat cari tahu titik koordinat kayak di atas, elo juga bisa menggunakan rumus persamaan kuadrat, nih. Kayak gimana rumusnya? Elo bisa cari tahu di artikel Rumus Persamaan Kuadrat dan Akar-Akarnya, ya.

Baca Juga: Rumus Persamaan Lingkaran dan Contoh Soal – Materi Matematika Kelas 11

Tenaga Mesin Yang Digunakan Untuk Menggerakkan Generator

N   = Tenaga mesin yang diperlukan

ηp  = Randemen pengopelan

0,8 = efisiensi generator

Generator merk Denyo FA-3;3 KW;efisiensi generator = 0,8; µp = 0,97

Berapa tenaga mesin yang diperlukan

Jadi mesin yang digunakan adalah RD 65 H/N karena tenaga kontinunya 5,5 HP

Artikel ini disusun bersama

. David Jia adalah seorang Tutor Akademis dan Pendiri LA Math Tutoring, sebuah perusahaan les privat yang berbasis di Los Angeles, California. Dengan lebih dari 10 tahun pengalaman mengajar, David menangani siswa dari segala usia dan kelas dalam berbagai mata pelajaran, serta memberikan konseling penerimaan perguruan tinggi dan persiapan ujian untuk SAT, ACT, ISEE, dan banyak lagi. Setelah mencapai nilai matematika 800 yang sempurna dan nilai bahasa Inggris 690 di SAT, David dianugerahi Beasiswa Dickinson dari Universitas Miami, dan lulus dengan gelar Sarjana Administrasi Bisnis. Selain itu, David bekerja sebagai instruktur video daring untuk perusahaan buku teks seperti Larson Texts, Big Ideas Learning, dan Big Ideas Math. Artikel ini telah dilihat 49.589 kali.

Halaman ini telah diakses sebanyak 49.589 kali.

TEMPO.CO, Jakarta - Lingkaran adalah salah satu bentuk bangun datar yang berjarak sama terhadap satu titik tertentu. Titik tertentu yang dimaksud berada tepat di tengah lingkaran yang disebut sebagai titik pusat lingkaran.

Penentuan luas dan keliling lingkaran umumnya muncul dalam mata pelajaran Matematika sejak duduk di bangku kelas empat sekolah dasar (SD). Lantas, bagaimana rumus keliling lingkaran?

Tenaga Mesin Yang Digunakan Untuk Menggerakkan Pompa Air

N  : Tenaga mesin yang diperlukan

Q  :  Debit air (m³/menit)

Pompa air merk Kawamoto FSR 50A (2”) diketahui :

debit air (Q) = 400 lt/menit atau 0,4 m³/menit, total head (H) = 17 m

Efisiensi pompa (EP) = 0,50. Berapa tenaga mesin yang diperlukan

Cara Pengopelan & Rumus Menghitung Diameter Pulley di Mesin Diesel

Sebelum melakukan pengopelan terlebih dahulu harus diperhatikan hubungan antara tenaga mesin penggerak dan tenaga yang diperlukan oleh mesin kerja, sehingga dalam pengopelan akan mendapatkan hasil yang baik.

L untuk V pulley sekitar 500 – 800 mm

L untuk F pulley 3 – 4 m

Unsur-Unsur Lingkaran

Titik tetap yang menjadi pusat dari semua titik pada lingkaran, yaitu O.

Jarak dari pusat lingkaran ke setiap titik pada lingkaran, yaitu AO, OB, atau OC.

Jarak terpanjang yang menghubungkan dua titik pada lingkaran melalui pusat, yaitu AB.

Bagian dari keliling lingkaran yang terletak antara dua titik pada lingkaran, yaitu BC.

Garis yang menghubungkan dua titik pada lingkaran tanpa melewati pusat, yaitu AC.

Garis tegak lurus dari pusat lingkaran ke tali busur, yaitu OD dalam segitiga OAC.

Daerah dalam lingkaran yang dibatasi oleh busur dan tali busur.

Daerah yang dibatasi oleh dua jari-jari dan sebuah tali busur, yaitu BOC.

Contoh Soal dan Pembahasan

Setelah tahu rumus-rumus lingkaran, inilah saatnya mengaplikasikan rumus tersebut ke dalam soal. Coba jawab soal tanpa scroll jawabannya, ya! Yuk, bersiap coret-coret dan simak contoh soalnya di bawah ini!

Sebuah lingkaran memiliki jari-jari 7 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 22/7.

Maka, keliling lingkaran tersebut adalah 44 cm dan luasnya 154 cm².

Sebuah lingkaran memiliki diameter 14 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 3,14.

L = 153,86 cm² atau 154 cm²

Maka, keliling lingkaran tersebut adalah 43,96 cm dan luas lingkarannya adalah 152,86 cm².

Sebuah lingkaran memiliki keliling 31,4 cm. Hitung jari-jari dan luas lingkaran tersebut. Gunakan π = 3,14.

Maka, jari-jari lingkaran tersebut adalah 5 cm dan luas lingkarannya adalah 78,5 cm².

Itu dia seluk-beluk perihal bangun datar bernama lingkaran, yang wujudnya kerap mengingatkan pada bola, uang koin, tutup botol, dan masih banyak benda-benda familiar di sekitar kita.

Nah, buat Skollamate yang ingin memperkaya ilmu Matematika dengan cara yang menyenangkan, kamu bisa menyimak pembahasannya lebih lanjut di aplikasi Skolla. Nggak cuma soal lingkaran dan matematika, tapi ada banyak materi lainnya yang bisa kamu pelajari di sana. Cek aplikasi Skolla untuk mulai belajar!

Rumus Mencari G-FORCE & RPM

Apa yang Dimaksud dengan “Lingkaran”?

Secara singkat, lingkaran adalah salah satu bangun datar. Jenis bangun datar yang mirip bentuk ban sepeda ini memiliki berbagai rumus yang nggak terlepas dari bagian ilmu Matematika. Kita akan mengetahui serba-serbi rumus lingkaran yang akan kita ulas kali ini.

Namun sebelum itu, kenalan dulu yuk, dengan identitas dari lingkaran.

Lingkaran adalah himpunan semua titik di bidang yang berjarak sama dari suatu titik tetap. Titik tetap ini yang kemudian disebut sebagai pusat lingkaran. Sedangkan, jarak dari pusat ke setiap titik disebut dengan jari-jari.

Biar lebih tergambar, Skollamate bisa lanjut baca bagian di bawah ini untuk tahu detail tentang unsur-unsur lingkaran, ya!

Pengertian Titik Pusat Lingkaran

Selain ngebahas tentang pengertiannya, gue juga mau ngasih tahu kalau ada unsur-unsur pelengkap di lingkaran. Emangnya, ada unsur-unsur apa aja, sih?

Pertama, ada yang namanya titik pusat lingkaran. Apa yang dimaksud dengan titik pusat lingkaran? Jadi, titik pusat lingkaran adalah titik yang berada di tengah lingkaran.

Terus, ada juga yang namanya diameter, nih. Apaan lagi, tuh? Nah, tali busur yang melewati titik pusat lingkaran disebut sebagai diameter. Unsur lainnya yang nggak kalah penting yaitu jari-jari lingkaran, letak titik pusat lingkaran ke garis lainnya.

Biar elo bisa paham seutuhnya, gue coba kasih gambaran dari titik pusat dan jari-jari lingkaran, ya.

Dengan gambar titik pusat lingkaran di atas, semoga elo jadi semakin mengerti unsur-unsur yang ada di dalam sebuah lingkaran, ya.

Tapi, gimana sih cara menentukan titik pusat lingkaran? Gue punya 3 tahapan yang bisa elo ikutin buat menentukan titik pusat lingkaran.

Nah, kalau elo mau nyari titik pusat lingkaran lewat gambar, bisa ikutin tiga langkah di atas, ya! Setelah tahu versi gambarnya, gue mau ngasih tahu rumusnya, nih.

Baca Juga: Contoh Soal Keliling dan Luas Lingkaran Beserta Rumusnya

Rumus Menghitung Diameter Pulley Mesin Kerja

Dimana : D1 = Diameter pulley diesel (mm)

N1 = Putaran mesin penggerak (rpm)

D2 = Diameter pulley mesin kerja (mm)

N2 = Putaran mesin kerja

ηp = Randemen pengopela

untuk Flat belt : 0,9 – 0,93

untuk V belt                 : 0,95 – 0,97

Contoh Soal Menentukan Titik Pusat Lingkaran

Sejauh ini, gue harap elo udah paham sama materi titik pusat lingkaran, ya. Supaya pemahaman elo semakin mendalam, gimana kalau kita adain kuis?

Yap! Gue punya tiga contoh soal buat menentukan titik pusat lingkaran, nih. Coba elo asah kemampuan elo tentang materi hari ini dengan mengerjakan ketiga soal di bawah ini, ya. Semangat!

Tentukan persamaan umum lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1).

A. (x+3)² + (y-7)² = 100

B. (x-3)² + (y-7)² = 100

C. (x+3)² + (y+7)² = 100

D. (x-3)² – (y-7)² = 100

Ingat bahwa persamaan umum lingkaran berbentuk

Dengan merupakan titik pusat lingkaran dan (y,p) merupakan titik yang dilalui. Maka dari itu, untuk lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1), dapat kita tentukan jari-jarinya terlebih dahulu, yaitu:

(-9 – (-3))² + (-1 – 7)²  = r²

36 + 64 = 100, dengan demikian r² = 100

Sehingga, persamaan umum lingkarannya adalah (x + 3)² + (y-7)² = 100

Jadi, jawaban yang paling tepat yaitu A.

Diketahui persamaan standar lingkaran yaitu x² + y² – 12x + 5y = 20. Tentukan jari-jari dari lingkaran tersebut!

x² + y² – 12x + 5y = 20 merupakan persamaan standar lingkaran.

Dari (1) diperoleh dan , sehingga:

Dari persamaan (1) diketahui bahwa , maka:

Jadi, jawaban yang paling tepat yaitu A.

Diketahui persamaan standar lingkaran yaitu . Tentukan titik pusat lingkaran tersebut!

Untuk persamaan lingkaran yang berbentuk , maka titik pusatnya yaitu A = -12, B=-10. Sehingga:

Jadi, jawaban yang paling tepat yaitu B.

Gimana, materi pembelajaran kita hari ini? Nggak susah, kan? Mungkin, gue bisa highlight satu hal buat elo. Kalau elo mau mencari titik pusat lingkaran, ingat aja buat nyari titik koordinatnya dulu, ya.

Kalau koordinatnya udah ketemu, elo bisa nerusin hasil akhirnya dengan lebih mudah. Nah, dari ketiga contoh soal di atas … siapa yang jawabannya benar semua, nih?

Oh iya, kalau elo merasa tiga soal di atas masih kurang buat ngebantu elo belajar tentang titik pusat, tenang aja! Zenius punya puluhan latihan soal buat elo persiapan try out, lho.

Lumayan banget nih, bisa sambil mengasah kemampuan elo mengerjakan soal-soal nantinya. Yuk, langsung aja klik link di bawah ini buat ikutan latihan soalnya, ya!

Latihan Try Out Bareng Zenius

Nah, itu dia pembahasan kita hari ini tentang titik pusat lingkaran. Lengkap banget, kan? Mulai dari pengertian, rumus, garis singgung, sampai penjabaran dari contoh soal titik pusat lingkaran.

Kalau dari elo sendiri, gimana? Udah paham sejauh ini? Oh iya, Zenius juga punya materi matematika lainnya yang nggak kalah keren dan menarik, lho. Nah, video materi matematika di bawah ini langsung diajarin sama Sabda! Penasaran? Tonton videonya langsung, ya!

Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.

Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?

Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?

Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!