Soal Luas Tabung Dan Volume Tabung
Rekomendasi Buku & Artikel Terkait
Rumus Volume Tabung, Luas Permukaan, & Keliling Alas – Dalam matematika terdapat sebuah materi atau pembahasan tentang bangun ruang. Bangun ruang adalah bangun-bangun yang memiliki suatu ruang dan dapat dapat dihitung dengan volume bangunnya. Maka dari itu, dikarenakan bangun ruang memiliki suatu ruang, maka biasanya bangun ruang dapat diisi dengan benda-benda lain. Nah, barang yang dapat diisi di dalam bangun ruang harus sesuai dengan banyaknya volume yang ada pada bangun ruang tersebut.
Setiap bangun ruang memiliki bentuk yang berbeda-beda, sehingga untuk menjumlahkan volumenya juga berbeda-beda. Selain itu, bangun ruang yang memiliki bentuk yang sama juga bisa memiliki volume yang berbeda juga. Volume yang berbeda ini terletak pada ukuran dari bangun ruang yang satu dengan bangun ruang yang lainnya, seperti tinggi yang berbeda, panjang yang berbeda, dan jari-jari yang berbeda.
Bangun ruang memiliki dimensi yang berbeda dengan bangun datar. Jumlah dimensi yang terdapat pada bangun ruang berjumlah 3 dimensi, sedangkan jumlah dimensi yang ada pada bangun datar berjumlah 2 dimensi saja. Perbedaan dimensi ini menandakan bahwa bangun datar tak bisa diisi dengan benda-benda lain, mengapa begitu? Hal ini dikarenakan bangun datar tidak memiliki ruang yang dapat menampung beberapa benda didalamnya. Meskipun bangun datar tidak memiliki ruang, tetapi adanya atau terbentuknya bangun ruang bisa terjadi karena adanya bangun datar di dalam bangun ruang tersebut.
Bangun ruang itu sendiri memiliki berbagai macam bentuk yang di mana setiap bentuknya selalu memiliki ciri-cirinya masing-masing. Setiap bangun ruang juga memiliki rumus yang berbeda. Salah satu bangun ruang yang memiliki ciri khas dan volume adalah bangun ruang tabung. Bangun ruang tabung merupakan bangun ruang yang terbentuk karena adanya alas atau penutup dari dua buah lingkaran. Nah, artikel ini akan membahas lebih dalam bangun ruang tabung, mulai dari pengertian hingga rumus-rumusnya, jadi, simak ulasan ini sampai habis, Grameds.
Pada dasarnya bangun ruang tabung ini juga sering dikenal dengan istilah silinder. Tabung adalah sebuah bangun ruang yang mempunyai sisi lengkung dan terdiri dari 3 sisi dan dua buah rusuk. Bidang sisi yang ada pada tabung terletak pada bagian alas atau alas tabung yang terdiri dari 1 buah sisi serta 1 sisi lagi terletak pada bidang lengkung bangun ruang tabung. Ternyata, bidang lengkung yang ada pada tabung sering dikenal dengan sebutan selimut tabung karena menutupi semua “badan” tabung. Satu lagi, bidang sisi tabung terletak pada bagian atas tabung atau lebih sering dikenal dengan sebutan tutup tabung.
Setelah membahas bidang sisi yang ada di dalam tabung, maka kamu perlu mengetahui jumlah rusuk yang ada di dalam bangun ruang tabung. Dalam hal ini, jumlah rusuk yang ada di dalam tabung ada 2. Rusuk tabung ini terletak pada bagian kanan dan kiri bidang lengkung tabung atau selimut tabung. Rusuk tabung ini bisa dibilang sebagai garis yang berpotongan antara sisi tabung.
Hal yang perlu digarisbawahi dari bangun ruang tabung ini terletak pada bagian bagian alas tabung dan tutup tabung yang merupakan bentuk bangun datar lingkaran yang harus memiliki bangun ruang (lingkaran) yang sama dan sejajar. Oleh karena itu, ketika menghitung volume hampir sama dengan cara menghitung bangun datar lingkaran.
Meskipun pada bagian bidang sisi lengkung tabung terdapat dua rusuk, tetapi pada kenyataannya, tabung itu sendiri tidak memiliki titik sudut. Hal ini dikarenakan pada bangun ruang tabung tidak ada rusuk yang saling bertemu yang kemudian dapat membentuk titik sudut. Lain halnya dengan bangun ruang kubus atau balok yang memiliki titik sudut yang dapat dihitung.
Rasanya kurang lengkap kalau membahas pengertian tabung, tetapi membahas pengertian tabung berdasarkan Kamus Besar Bahasa Indonesia (KBBI). Tabung adalah tempat sesuatu yang bentuknya seperti bumbung. Oleh sebab itu, tabung ini sering dijadikan sebagai suatu wadah untuk menyimpan sesuatu. Terlebih lagi, wadah berbentuk tabung ini memiliki ruang yang cukup luas, sehingga sering digunakan dalam kehidupan sehari-hari, seperti gelas, teko, dan lain-lain.
Bangun ruang tabung sebenarnya sudah sering kita temukan pada beberapa barang dagangan yang dijual di warung, seperti susu kaleng, botol minyak, botol minuman, dan lain-lain. Selain itu, tabung juga bisa ditemukan pada benda-benda di dalam rumah, seperti gelas, toples, botol minum, dan sebagainya. Jadi, apakah di dalam rumah kamu ada benda berbentuk tabung?
Dengan demikian, tabung sebenarnya sudah hampir sering kita jumpai dalam kehidupan kita sehari-hari. Selain itu, tabung adalah bangun ruang yang memiliki 3 buah bidang sisi dan 2 buah rusuk yang memiliki fungsi sebagai wadah dari sesuatu.
Seperti yang sudah dibahas sebelumnya, jika setiap bangun ruang pasti memiliki ciri-ciri yang berbeda. Berikut ini ciri-ciri yang ada pada bangun ruang tabung.
Dalam satu bangun ruang tabung terdapat 3 sisi didalamnya. Dengan adanya 3 sisi tersebut, maka bangun ruang tabung bisa terbentuk. Selain itu, ketiga sisi yang ada pada bangun ruang tabung, kita juga bisa menghitung volume pada tabung. Adapun 3 sisi bangun ruang pada tabung terletak pada bagian sisi alas tabung, bagian sisi tutup tabung, dan bagian sisi selimut tabung.
Pada bagian sisi alas tabung dan sisi tutup tabung merupakan kunci dari terbentuknya bangun ruang tabung. Hal ini dikarenakan dengan adanya sisi alas dan sisi tutup, maka sisi selimut dapat tertutupi. Selain itu, pada bagian selimut tabung bisa dibilang memiliki bentuk berupa bangun datar persegi panjang, mengapa begitu? Karena bangun persegi panjang tersebut menjadi penghubung antara bagian sisi alas tabung dengan bagian sisi tutup tabung.
Membantu Percobaan Reaksi Kimia
Tabung reaksi juga dapat digunakan untuk membantu percobaan reaksi kimia. Tidak hanya dalam skala medium, tetapi juga skala kecil.
Luas Permukaan Tabung
Untuk menghitung luas permukaan tabung dapat dihitung dengan cara menjumlahkan luas ketiga sisinya.
Luas permukaan tabung = Luas alas + Luas tutup + Luas selimut tabung
Luas selimut tabung = 2 x 𝜋 x r x t
Hasil Pencarian Tabung Induksi Tabung
Maaf, barangnya tidak ketemu
Coba cek lagi kata pencarianmu.
Tabung Vacutainer berfungsi untuk menampung darah ketika terlekat pada jarum suntik. Terdapat berbagai jenis tabung berdasarkan warna tutup dan zat aditifnya, yang digunakan untuk menjaga kelangsungan hidup sampel darah atau memisahkan komponennya untuk tujuan pemeriksaan kimia, hematologi, mikrobiologi, dan lainnya.
Untuk kegunaan lain, lihat
Tabung atau silinder adalah bangun ruang tiga dimensi yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Tabung memiliki 3 sisi dan 2 rusuk.
Kedua lingkaran disebut sebagai alas dan tutup tabung serta persegi panjang yang menyelimutinya disebut sebagai selimut tabung.
Definisi dan hasil dalam bagian tersebut diambil dari teks pada tahun 1913, Bidang dan Geometri Padat ditemukan oleh George Wentworth dan David Eugene Smith (Wentworth & Smith 1913).
Permukaan tabung adalah permukaan yang terdiri dari semua titik pada baris yang sejajar dengan garis yang diketahui dan melewati tetap kurva pesawat dalam pesawat tidak sejajar dengan garis yang diberikan. Pada garis tersebut kelompok garis sejajar atau disebut juga elemen permukaan tabung. Dari sudut pandang kinematika jika diberi kurva bidang yang disebut directrix. Permukaan Tabung adalah permukaan yang dilacak oleh sebuah garis yang disebut generatrix bukannya dalam bidang directrix, yang sejajar dengan dirinya sendiri dan selalu melewati directrix. Posisi tertentu dari matrik generatrik adalah elemen permukaan tabung.
Bagian Tabung adalah terpotong nya permukaan tabung dengan bagian bidang. Kurva merupakan jenis dari penampang bidang. Bagian Tabung pada bidang yang berisi dua elemen tabung disebut jajaran genjang.[1] Bagian tabung dari tabung biasa adalah selimut alas yang berbentuk persegi panjang.[1]
Bagian Tabung di mana bidang yang terpotong dan tegak lurus terhadap semua elemen tabung.[2] Bagian kanan tabung adalah lingkaran maka tabung tersebut adalah tabung yang melingkar. Secara umum, jika bagian kanan tabung adalah bagian yang berbentuk kerucut (parabola, elips, hiperbola) maka tabung padat masing-masing disebut sebagai parabola, elips, dan hiperbolik.
Tabung berbentuk melingkar kanan dengan penampang tabung yang berbentuk elips, eksentrisitas e dari penampang tabung dan sumbu semi-mayor a dari penampang tabung bergantung pada jari-jari tabung r dan sudut α antara bidang garis potong dan sumbu tabung dengan cara sebagai berikut:
Secara dirumuskan dengan prinsip yang sama volume setiap tabung adalah hasil perkalian dari luas alas dan tinggi. Misalnya tabung berbentuk elips dengan alas bersumbu semi mayor a pada sumbu semi minor b dan tinggi t dengan rumus volume V = πr²×t. Hasil untuk tabung elips dapat diperoleh dengan bentuk integral dimana sumbu tabung diambil sebagai sumbu x dan L(x) = L luas setiap penampang elips dengan dirumuskan sebagai berikut:
Dengan menggunakan koordinat tabung, volume tabung berbentuk lingkaran dapat dihitung dalam bentuk integral yaitu
Bagian ini memerlukan
. Anda dapat membantu dengan
(Inggris) Weisstein, Eric W. "Tabung". MathWorld.
Tidak sedikit orang yang masih belum tahu cara menggunakan mesin cuci dengan benar. Mesin cuci sendiri merupakan perangkat elektronik yang paling banyak orang gunakan. Agar memiliki pakaian yang selalu bersih, kehadiran alat ini menjadi sangat penting dalam setiap rumah.
Adanya Pemisah Antara Lingkaran Alas dan Tutup Tabung
Sifat kedua dari bangun ruang tabung adalah adanya pemisah antara alas tabung dengan tutup tabung. Pemisah antara lingkaran alas dan tutup tabung bisa dibilang sangat penting karena tanpa adanya pemisah, maka lingkaran dua buah lingkaran tidak akan berhasil membentuk bangun ruang tabung. Hal ini dikarenakan dua buah lingkaran tersebut tidak akan bisa menjadi alas tabung dan tutup tabung.
Pemisah antara alas tabung dan tutup tabung disebut dengan istilah selimut tabung. Selimut tabung adalah jarak yang berfungsi memisahkan antara lingkaran yang ada pada tabung. Selain itu, selimut tabung akan membentuk sebuah bidang sisi lengkung. Dengan adanya bidang sisi tersebut, maka tabung menjadi memiliki ruang.
Adanya Lingkaran pada Bagian Alas dan Tutup Tabung
Ciri ketiga dari bangun ruang tabung adalah adanya alas dan tutup pada tabung yang berbentuk lingkarang. Pada bagian sisi alas dan sisi tutup tabung berupa lingkaran. Uniknya lagi, lingkaran yang dijadikan alas dan tutup tabung pasti memiliki ukuran yang sama satu sama lain. Oleh karena itu, ketika menghitung keliling lingkaran, kita hanya menghitung salah satu lingkaran saja dan tak perlu menghitung kedua lingkaran alas dan tutup tabung.
Tidak hanya itu saja, bagian alas dan tutup tabung ini menjadi tanda bahwa dalam bangun ruang tabung ini dibentuk dengan dua lingkaran. Tanpa adanya kedua lingkaran itu, suatu bangun ruang tabung tidak akan terbentuk. Meskipun lingkaran berperan penting dalam terbentuknya bangun ruang tabung, tetapi tanpa adanya persegi panjang (sebagai selimut tabung) tabung tidak akan terbentuk.
Pada dasarnya, setiap bangun ruang pasti memiliki jaring-jaring. Begitu pun dengan bangun ruang tabung juga memiliki jaring-jaring yang terdiri dari dua buah lingkaran dan satu buah persegi panjang. Berikut ini contoh jaring-jaring bangun ruang tabung.
Bangun ruang tabung memiliki dua jenis, yaitu tabung terbuka dan tabung tertutup.
Tabung terbuka adalah jenis tabung yang di mana salah satu sisi tutupnya atau sisi alasnya terbuka atau sisi alas dan sisi tutupnya dua-duanya terbuka.
Tabung tertutup adalah jenis tabung yang di mana seluruh bagian dan sisinya semuanya tertutup.
Volume pada bangun ruang tabung dapat dihitung dengan rumus sebagai berikut
V = Luas alas x tinggi
Adanya Jari-Jari Tabung
Sifat pertama dari tabung adalah adanya jari-jari yang terletak pada bagian atas dan bagian alas tabung. Jari-jari pada tabung ini berfungsi untuk menghitung keliling tabung itu sendiri. Setiap bangun ruang tabung pasti memiliki bangun lingkaran yang ukurannya sama pada bagian alas tabung dan tutup tabung, sehingga kita hanya perlu menghitung satu lingkaran tabung (alas atau tutup) supaya bisa menghitung keliling tabung.
Ternyata, jari-jari tabung bukan hanya berfungsi untuk menghitung keliling tabung saja, tetapi juga berfungsi untuk menghitung volume tabung. Maka dari itu, dapat dikatakan bahwa rumus menghitung keliling dan volume tabung sangat berpengaruh terhadap ukuran jari-jari pada tabung. Jadi, sebelum menghitung keliling dan volume tabung, sebaiknya dicari terlebih dahulu jari-jari tabung.
Sisi Alas dan Sisi Tutup Tabung
Unsur kesatu dari bangun ruang tabung adalah adanya sisi alas dan sisi tutup tabung. Sisi alas dan sisi tutup tabung terbentuk dari dua buah lingkaran yang di mana sisi alas tabung terletak pada bagian bawah tabung dan sisi tutup tabung terletak pada bagian atas tabung. Dengan kata lain, sisi alas tabung berfungsi agar tabung tidak jatuh dan sisi tutup tabung berfungsi untuk menutupi bagian tabung. Adapun pembentuk dari lingkaran, yaitu pusat lingkaran dan jari-jari lingkaran.
Unsur kedua dari tabung adalah selimut tabung. Selimut tabung adalah sisi lengkung yang letaknya berada di bagian tengah tabung. Dengan kata lain, selimut tabung terletak di antara sisi alas dan susu tutup tabung. Sementara itu, fungsi dari selimut tabung adalah untuk menghubungkan sisi alas dengan sisi tutup tabung.
Unsur bangun ruang tabung yang ketiga adalah jari-jari tabung. Jari-jari tabung yang ada di tabung merupakan jari-jari yang ada di dalam lingkaran. Lingkaran pada bangun ruang tabung terletak pada bagian alas tabung dan bagian tutup tabung. Jari-jari tabung adalah suatu jarak antara rusuk tabung dengan titik pusat lingkaran tabung.
Unsur tabung yang kelima adalah diameter tabung. Diameter tabung adalah panjang dari jari-jari tabung yang dikalikan dua. Oleh sebab itu, dapat dikatakan bahwa diameter tabung merupakan jarak dari rusuk tabuk yang melalui titik pusat lingkaran tabung. Diameter tabung letaknya sama dengan dengan jari-jari tabung, yaitu di sisi alas dan di sisi tutup tabung. Pada dasarnya, diameter tabung jarang sekali digunakan karena dalam rumus-rumus tabung yang lebih sering digunakan adalah jari-jari tabung.
Unsur tabung yang kelima adalah tinggi tabung. Tinggi tabung adalah suatu jarak antara titik pusat lingkaran yang berada di sisi tutup tabung dengan titik pusat lingkaran yang berada di sisi alas tabung.
Bangun ruang tabung memiliki beberapa sifat, yaitu:
Memiliki 2 Buah Rusuk
Ciri kedua dari bangun ruang tabung adalah memiliki 2 buah rusuk yang letaknya berada di bagian alas dan tutup tabung dan berupa lengkungan garis lingkaran. Dengan adanya dua buah rusuk ini, kita jadi tahu bahwa garis lengkungan ini akan memengaruhi ukuran jari-jari bangun ruang tabung. Selain itu, tanpa adanya dua buah rusuk, kita tidak akan tahu letak lingkaran berada di mana karena tidak ada garis lengkungan.
Ciri tabung yang satu ini bisa dibilang sebagai pemberitahu letak dari lingkaran itu berada. Dua buah rusuk menjadi penting karena lingkaran merupakan salah satu bangun datar yang dapat membentuk bangun ruang tabung dan lingkaran sudah menjadi bagian dari jaring-jaring tabung.
Sisi Alas dan Sisi Tutup Tabung
Unsur kesatu dari bangun ruang tabung adalah adanya sisi alas dan sisi tutup tabung. Sisi alas dan sisi tutup tabung terbentuk dari dua buah lingkaran yang di mana sisi alas tabung terletak pada bagian bawah tabung dan sisi tutup tabung terletak pada bagian atas tabung. Dengan kata lain, sisi alas tabung berfungsi agar tabung tidak jatuh dan sisi tutup tabung berfungsi untuk menutupi bagian tabung. Adapun pembentuk dari lingkaran, yaitu pusat lingkaran dan jari-jari lingkaran.
Unsur kedua dari tabung adalah selimut tabung. Selimut tabung adalah sisi lengkung yang letaknya berada di bagian tengah tabung. Dengan kata lain, selimut tabung terletak di antara sisi alas dan susu tutup tabung. Sementara itu, fungsi dari selimut tabung adalah untuk menghubungkan sisi alas dengan sisi tutup tabung.
Unsur bangun ruang tabung yang ketiga adalah jari-jari tabung. Jari-jari tabung yang ada di tabung merupakan jari-jari yang ada di dalam lingkaran. Lingkaran pada bangun ruang tabung terletak pada bagian alas tabung dan bagian tutup tabung. Jari-jari tabung adalah suatu jarak antara rusuk tabung dengan titik pusat lingkaran tabung.
Unsur tabung yang kelima adalah diameter tabung. Diameter tabung adalah panjang dari jari-jari tabung yang dikalikan dua. Oleh sebab itu, dapat dikatakan bahwa diameter tabung merupakan jarak dari rusuk tabuk yang melalui titik pusat lingkaran tabung. Diameter tabung letaknya sama dengan dengan jari-jari tabung, yaitu di sisi alas dan di sisi tutup tabung. Pada dasarnya, diameter tabung jarang sekali digunakan karena dalam rumus-rumus tabung yang lebih sering digunakan adalah jari-jari tabung.
Unsur tabung yang kelima adalah tinggi tabung. Tinggi tabung adalah suatu jarak antara titik pusat lingkaran yang berada di sisi tutup tabung dengan titik pusat lingkaran yang berada di sisi alas tabung.
Bangun ruang tabung memiliki beberapa sifat, yaitu: